Stochastic Optimization Methods Stochastic Optimization Methods

Stochastic Optimization Methods

    • USD 109.99
    • USD 109.99

Descripción editorial

Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

GÉNERO
Negocios y finanzas personales
PUBLICADO
2005
5 de diciembre
IDIOMA
EN
Inglés
EXTENSIÓN
327
Páginas
EDITORIAL
Springer Berlin Heidelberg
VENDEDOR
Springer Nature B.V.
TAMAÑO
10.5
MB
Leichenreden Leichenreden
2025
Stochastic Optimization Methods Stochastic Optimization Methods
2024
Die Riesin Die Riesin
2023
Hannis Äpfel Hannis Äpfel
2021
Der Alphornpalast Der Alphornpalast
2021
Optimization Under Stochastic Uncertainty Optimization Under Stochastic Uncertainty
2020