Feynman's Operational Calculus and Beyond Feynman's Operational Calculus and Beyond

Feynman's Operational Calculus and Beyond

Noncommutativity and Time-Ordering

Gerald W Johnson and Others
    • €109.99
    • €109.99

Publisher Description

This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book.

The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted.

This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.

GENRE
Science & Nature
RELEASED
2015
6 August
LANGUAGE
EN
English
LENGTH
368
Pages
PUBLISHER
OUP Oxford
PROVIDER INFO
The Chancellor, Masters and Scholar s of the University of Oxford tradi ng as Oxford University Press
SIZE
29.5
MB
Generalized Ordinary Differential Equations in Abstract Spaces and Applications Generalized Ordinary Differential Equations in Abstract Spaces and Applications
2021
Quantization and Arithmetic Quantization and Arithmetic
2008
Partial Differential Equations: Modeling, Analysis and Numerical Approximation Partial Differential Equations: Modeling, Analysis and Numerical Approximation
2016
Singular Integrals and Fourier Theory on Lipschitz Boundaries Singular Integrals and Fourier Theory on Lipschitz Boundaries
2019
Multiple Wiener-Itô Integrals Multiple Wiener-Itô Integrals
2013
The Limit Shape Problem for Ensembles of Young Diagrams The Limit Shape Problem for Ensembles of Young Diagrams
2016