Knowledge Transfer between Computer Vision and Text Mining Knowledge Transfer between Computer Vision and Text Mining

Knowledge Transfer between Computer Vision and Text Mining

Similarity-based Learning Approaches

    • €87.99
    • €87.99

Publisher Description

This ground-breaking text/reference diverges from the
traditional view that computer vision (for image analysis) and string
processing (for text mining) are separate and unrelated fields of study,
propounding that images and text can be treated in a similar manner for the
purposes of information retrieval, extraction and classification. Highlighting
the benefits of knowledge transfer between the two disciplines, the text
presents a range of novel similarity-based learning techniques founded on this
approach.

Topics and features:
Describes a
variety of similarity-based learning approaches, including nearest neighbor
models, local learning, kernel methods, and clustering algorithmsPresents a
nearest neighbor model based on a novel dissimilarity for images, and applies
this for handwritten digit recognition and texture analysisDiscusses a
novel kernel for (visual) word histograms, as well asseveral kernels based on pyramid representation, and uses these for facial expression recognition and
text categorization by topicIntroduces an
approach based on string kernels for native language identificationContains links
for downloading relevant open source codeWith a foreword
by Prof. Florentina Hristea


This unique work will be of great benefit to
researchers, postgraduate and advanced undergraduate students involved in
machine learning, data science, text mining and computer vision.

Dr. Radu Tudor Ionescu is an Assistant
Professor in the Department of Computer Science at the University of Bucharest,
Romania. Dr. Marius Popescu is an Associate
Professor at the same institution.

GENRE
Computing & Internet
RELEASED
2016
25 April
LANGUAGE
EN
English
LENGTH
274
Pages
PUBLISHER
Springer International Publishing
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
6.1
MB
Pattern Recognition And Big Data Pattern Recognition And Big Data
2016
Pattern Recognition and Machine Intelligence Pattern Recognition and Machine Intelligence
2009
Pattern Recognition and Image Analysis Pattern Recognition and Image Analysis
2011
Artificial Neural Networks in Pattern Recognition Artificial Neural Networks in Pattern Recognition
2016
Neural Information Processing Neural Information Processing
2015
Machine Learning and Data Mining in Pattern Recognition Machine Learning and Data Mining in Pattern Recognition
2007