Kontsevich’s Deformation Quantization and Quantum Field Theory Kontsevich’s Deformation Quantization and Quantum Field Theory
Lecture Notes in Mathematics

Kontsevich’s Deformation Quantization and Quantum Field Theory

    • €54.99
    • €54.99

Publisher Description

This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder.  This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the involved algebraic and field-theoretic methods. The connection to quantum field theory leads to the study of important new field theories and to insights in other parts of mathematics such as symplectic and Poisson geometry, and integrable systems. Based on lectures given by the author at the University of Zurich, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites.

GENRE
Science & Nature
RELEASED
2022
11 August
LANGUAGE
EN
English
LENGTH
349
Pages
PUBLISHER
Springer International Publishing
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
12.2
MB
Geometry and Physics Geometry and Physics
2021
Topics in Clifford Analysis Topics in Clifford Analysis
2019
Einstein Metrics and Yang-Mills Connections Einstein Metrics and Yang-Mills Connections
2020
B-Model Gromov-Witten Theory B-Model Gromov-Witten Theory
2019
Differential Geometry and Lie Groups Differential Geometry and Lie Groups
2020
Geometry, Lie Theory and Applications Geometry, Lie Theory and Applications
2022
INTRODUCTION TO PROBABILITY THEORY INTRODUCTION TO PROBABILITY THEORY
2022
Quantum Field Theory and Functional Integrals Quantum Field Theory and Functional Integrals
2023
Numerical Methods for Metric Graphs Numerical Methods for Metric Graphs
2025
Relative Rearrangement Relative Rearrangement
2025
Global Logarithmic Deformation Theory Global Logarithmic Deformation Theory
2025
Discrete Weak KAM Theory Discrete Weak KAM Theory
2025
Operator Space Tensor Norms Operator Space Tensor Norms
2025
Stochastic Geometry: Percolation, Tesselations, Gaussian Fields and Point Processes Stochastic Geometry: Percolation, Tesselations, Gaussian Fields and Point Processes
2025