Numerical Analysis for Statisticians Numerical Analysis for Statisticians
Statistics and Computing

Numerical Analysis for Statisticians

Second Edition

    • €77.99
    • €77.99

Publisher Description

Every advance in computer architecture and software tempts statisticians to tackle numerically harder problems. To do so intelligently requires a good working knowledge of numerical analysis. This book equips students to craft their own software and to understand the advantages and disadvantages of different numerical methods. Issues of numerical stability, accurate approximation, computational complexity, and mathematical modeling share the limelight in a broad yet rigorous overview of those parts of numerical analysis most relevant to statisticians.
In this second edition, the material on optimization has been completely rewritten. There is now an entire chapter on the MM algorithm in addition to more comprehensive treatments of constrained optimization, penalty and barrier methods, and model selection via the lasso. There is also new material on the Cholesky decomposition, Gram-Schmidt orthogonalization, the QR decomposition, the singular value decomposition, and reproducing kernel Hilbert spaces. The discussions of the bootstrap, permutation testing, independent Monte Carlo, and hidden Markov chains are updated, and a new chapter on advanced MCMC topics introduces students to Markov random fields, reversible jump MCMC, and convergence analysis in Gibbs
sampling.
Numerical Analysis for Statisticians can serve as a graduate text for a course surveying computational statistics. With a careful selection of topics and appropriate supplementation, it can be used at the undergraduate level. It contains enough material for a graduate course on optimization theory. Because many chapters are nearly self-contained, professional statisticians will also find the book useful as a reference.
Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Biomathematics and Human Genetics and the Chair of the Department of Human Genetics, all in the UCLA School of Medicine. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, high-dimensional optimization, and applied stochastic processes. Springer previously published his books Mathematical and Statistical Methods for Genetic Analysis, 2nd ed., Applied Probability, and Optimization. He has written over 200 research papers and produced with his UCLA colleague Eric Sobel the computer program Mendel, widely used in statistical genetics.

GENRE
Business & Personal Finance
RELEASED
2010
17 May
LANGUAGE
EN
English
LENGTH
620
Pages
PUBLISHER
Springer New York
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
11.4
MB
Optimization Optimization
2013
Learning Theory Learning Theory
2007
Large Sample Techniques for Statistics Large Sample Techniques for Statistics
2010
Probability for Statistics and Machine Learning Probability for Statistics and Machine Learning
2011
Foundations of Machine Learning, second edition Foundations of Machine Learning, second edition
2018
Mathematical Foundations of Big Data Analytics Mathematical Foundations of Big Data Analytics
2021
Optimization Optimization
2013
Applied Probability Applied Probability
2010
Elements of Network Science Elements of Network Science
2025
A First Course in Statistical Learning A First Course in Statistical Learning
2025
Visualization and Imputation of Missing Values Visualization and Imputation of Missing Values
2023
Fundamentals of Supervised Machine Learning Fundamentals of Supervised Machine Learning
2023
Applied Statistical Learning Applied Statistical Learning
2023
An Introduction to Statistics with Python An Introduction to Statistics with Python
2022