Optimal Learning Optimal Learning
    • €114.99

Publisher Description

Learn the science of collecting information to make effective decisions
Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business.

This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication:
Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements
Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduc­tion to learning and a variety of policies for learning.

GENRE
Science & Nature
RELEASED
2013
9 July
LANGUAGE
EN
English
LENGTH
414
Pages
PUBLISHER
Wiley
PROVIDER INFO
John Wiley & Sons Ltd
SIZE
26
MB
Reinforcement Learning and Stochastic Optimization Reinforcement Learning and Stochastic Optimization
2022
Quantitative Methods Quantitative Methods
2012
Handbook in Monte Carlo Simulation Handbook in Monte Carlo Simulation
2014
Bayesian Methods for Management and Business Bayesian Methods for Management and Business
2014
A Study of Business Decisions under Uncertainty A Study of Business Decisions under Uncertainty
2013
Probabilistic Graphical Models Probabilistic Graphical Models
2009
Reinforcement Learning and Stochastic Optimization Reinforcement Learning and Stochastic Optimization
2022
Approximate Dynamic Programming Approximate Dynamic Programming
2011
Bayesian Networks Bayesian Networks
2011
Design and Analysis of Clinical Trials Design and Analysis of Clinical Trials
2013
Statistical Rules of Thumb Statistical Rules of Thumb
2011
Applied Time Series Analysis for the Social Sciences Applied Time Series Analysis for the Social Sciences
2025
Statistical Planning and Inference Statistical Planning and Inference
2025
Permutation Tests for Complex Data Permutation Tests for Complex Data
2025