Stochastic Exponential Growth and Lattice Gases Stochastic Exponential Growth and Lattice Gases

Stochastic Exponential Growth and Lattice Gases

Statistical Mechanics of Stochastic Compounding Processes

    • €42.99
    • €42.99

Publisher Description

The book discusses a class of discrete time stochastic growth processes for which the growth rate is proportional to the exponential of a Gaussian Markov process. These growth processes appear naturally in problems of mathematical finance as discrete time approximations of stochastic volatility models and stochastic interest rates models such as the Black-Derman-Toy and Black-Karasinski models. These processes can be mapped to interacting one-dimensional lattice gases with long-range interactions.

The book gives a detailed discussion of these statistical mechanics models, including new results not available in the literature, and their implication for the stochastic growth models. The statistical mechanics analogy is used to understand observed non-analytic dependence of the Lyapunov exponents of the stochastic growth processes considered, which is related to phase transitions in the lattice gas system. The theoretical results are applied to simulations of financial models and are illustrated with Mathematica code.

The book includes a general introduction to exponential stochastic growth with examples from biology, population dynamics and finance. The presentation does not assume knowledge of mathematical finance. The new results on lattice gases can be read independently of the rest of the book. The book should be useful to practitioners and academics studying the simulation and application of stochastic growth models.

GENRE
Science & Nature
RELEASED
2022
1 September
LANGUAGE
EN
English
LENGTH
141
Pages
PUBLISHER
Springer International Publishing
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
9.5
MB
Recent Advances in Kinetic Equations and Applications Recent Advances in Kinetic Equations and Applications
2022
Trails in Kinetic Theory Trails in Kinetic Theory
2021
Continuous Time Processes for Finance Continuous Time Processes for Finance
2022
An Introduction to Fronts in Random Media An Introduction to Fronts in Random Media
2009
Probability and Partial Differential Equations in Modern Applied Mathematics Probability and Partial Differential Equations in Modern Applied Mathematics
2010
Telegraph Processes and Option Pricing Telegraph Processes and Option Pricing
2023