The Early Period of the Calculus of Variations The Early Period of the Calculus of Variations

The Early Period of the Calculus of Variations

    • €109.99
    • €109.99

Publisher Description

This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful.

The authors begin in 1697 with Johann Bernoulli’s work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange’s δ-calculus, including:

•           The isoperimetrical problems

•           Shortest lines and geodesics

•           Euler’s Methodus Inveniendi and the two Additamenta

Finally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field.

This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.

GENRE
Science & Nature
RELEASED
2016
27 June
LANGUAGE
EN
English
LENGTH
305
Pages
PUBLISHER
Springer International Publishing
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
5.5
MB
The Impossibility of Squaring the Circle in the 17th Century The Impossibility of Squaring the Circle in the 17th Century
2019
Seventeenth-Century Indivisibles Revisited Seventeenth-Century Indivisibles Revisited
2015
From Riemann to Differential Geometry and Relativity From Riemann to Differential Geometry and Relativity
2017
Journey through Mathematics Journey through Mathematics
2011
Irrationality, Transcendence and the Circle-Squaring Problem Irrationality, Transcendence and the Circle-Squaring Problem
2023
Mathematics and Its History Mathematics and Its History
2010
Boole - La logica matematica dei computer Boole - La logica matematica dei computer
2022
Metodi matematici per la teoria dell’evoluzione Metodi matematici per la teoria dell’evoluzione
2011