Understanding the Path from Classical to Quantum Mechanics Understanding the Path from Classical to Quantum Mechanics
SpringerBriefs in Physics

Understanding the Path from Classical to Quantum Mechanics

    • €37.99
    • €37.99

Publisher Description

The book is about the transition from classical to quantum mechanics, covering the historical development of this great leap, and explaining the concepts needed to understand it at a level suitable for undergraduate students. The first part of the book summarizes classical electrodynamics and the Hamiltonian formulation of classical mechanics, the two elements of classical physics which are crucial for understanding the classical to quantum transition. The second part loosely traces the historical development of the classical to quantum transition, starting with Einstein’s 1916 derivation of the Planck radiation law, continuing with the Ladenburg-Kramers-Born-Heisenberg dispersion theory and ending with Heisenberg’s magical 1925 paper which established quantum mechanics. The purpose of the book is partly historical, partly philosophical, but mainly pedagogical. It will appeal to a wide audience, from undergraduate students, for whom it can serve as a preparatory or supplementary text to standard textbooks, to physicists and historians interested in the historical development of science.

GENRE
Science & Nature
RELEASED
2023
27 July
LANGUAGE
EN
English
LENGTH
73
Pages
PUBLISHER
Springer Nature Switzerland
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
2.2
MB
An Algebraic Approach to the Many-Electron Problem An Algebraic Approach to the Many-Electron Problem
2025
Quantum Mechanics and Electrodynamics Quantum Mechanics and Electrodynamics
2017
Lectures on Generalized Global Symmetries Lectures on Generalized Global Symmetries
2025
A Superintense Laser-Plasma Interaction Theory Primer A Superintense Laser-Plasma Interaction Theory Primer
2025
Langevin Stochastic Equations: Treatment of Ocean, Planetary Boundary Layer, and Stellar Turbulence Langevin Stochastic Equations: Treatment of Ocean, Planetary Boundary Layer, and Stellar Turbulence
2025
Ferronematics and Living Liquid Crystals Ferronematics and Living Liquid Crystals
2025
An Algebraic Approach to the Many-Electron Problem An Algebraic Approach to the Many-Electron Problem
2025
Introduction to the Theory of Incoherent Scattering of Radar Waves from Plasmas Introduction to the Theory of Incoherent Scattering of Radar Waves from Plasmas
2025