Analyzing Compositional Data with R Analyzing Compositional Data with R
Use R

Analyzing Compositional Data with R

    • 54,99 €
    • 54,99 €

Descrizione dell’editore

This book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package “compositions,” it is also a general introductory text on Compositional Data Analysis.

Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software.

The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics.

Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.

GENERE
Scienza e natura
PUBBLICATO
2013
29 giugno
LINGUA
EN
Inglese
PAGINE
273
EDITORE
Springer Berlin Heidelberg
DATI DEL FORNITORE
Springer Science & Business Media LLC
DIMENSIONE
2,7
MB
Computerized Adaptive and Multistage Testing with R Computerized Adaptive and Multistage Testing with R
2017
Heart Rate Variability Analysis with the R package RHRV Heart Rate Variability Analysis with the R package RHRV
2017
Bayesian Networks in R Bayesian Networks in R
2014
Dynamic Linear Models with R Dynamic Linear Models with R
2009
Bayesian Cost-Effectiveness Analysis with the R package BCEA Bayesian Cost-Effectiveness Analysis with the R package BCEA
2025
Cultural Analytics in R: A Tidy Approach Cultural Analytics in R: A Tidy Approach
2025