Machine Learning Machine Learning
Adaptive Computation and Machine Learning series

Machine Learning

A Probabilistic Perspective

    • 67,99 €
    • 67,99 €

Descrizione dell’editore

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

GENERE
Computer e internet
PUBBLICATO
2012
24 agosto
LINGUA
EN
Inglese
PAGINE
1.104
EDITORE
MIT Press
DATI DEL FORNITORE
Random House, LLC
DIMENSIONE
36,3
MB
Probabilistic Machine Learning Probabilistic Machine Learning
2022
Probabilistic Machine Learning Probabilistic Machine Learning
2023
Historicising Gender and Sexuality Historicising Gender and Sexuality
2011
Deep Learning Deep Learning
2016
Foundations of Computer Vision Foundations of Computer Vision
2024
Probabilistic Machine Learning Probabilistic Machine Learning
2022
Knowledge Graphs Knowledge Graphs
2021
Reinforcement Learning, second edition Reinforcement Learning, second edition
2018
Learning Theory from First Principles Learning Theory from First Principles
2024