A Second Course in Complex Analysis A Second Course in Complex Analysis

A Second Course in Complex Analysis

    • ¥1,700
    • ¥1,700

発行者による作品情報

A clear, self-contained treatment of important areas in complex analysis, this text is geared toward upper-level undergraduates and graduate students. The material is largely classical, with particular emphasis on the geometry of complex mappings.


Author William A. Veech, the Edgar Odell Lovett Professor of Mathematics at Rice University, presents the Riemann mapping theorem as a special case of an existence theorem for universal covering surfaces. His focus on the geometry of complex mappings makes frequent use of Schwarz's lemma. He constructs the universal covering surface of an arbitrary planar region and employs the modular function to develop the theorems of Landau, Schottky, Montel, and Picard as consequences of the existence of certain coverings. Concluding chapters explore Hadamard product theorem and prime number theorem.

ジャンル
科学/自然
発売日
2014年
7月8日
言語
EN
英語
ページ数
256
ページ
発行者
Dover Publications
販売元
INscribe Digital
サイズ
26.8
MB
Introduction to Functions of a Complex Variable Introduction to Functions of a Complex Variable
2021年
A Course in Analysis A Course in Analysis
2017年
Applied Complex Variables Applied Complex Variables
2012年
KRZYZ CONJECTURE: THEORY AND METHODS, THE KRZYZ CONJECTURE: THEORY AND METHODS, THE
2021年
Complex Analysis Complex Analysis
2018年
Introductory Complex Analysis Introductory Complex Analysis
2013年