Advanced Markov Chain Monte Carlo Methods Advanced Markov Chain Monte Carlo Methods
Wiley Series in Computational Statistics

Advanced Markov Chain Monte Carlo Methods

Learning from Past Samples

Faming Liang その他
    • ¥17,800
    • ¥17,800

発行者による作品情報

Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics.
Key Features:
Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals.
This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.

ジャンル
科学/自然
発売日
2011年
7月5日
言語
EN
英語
ページ数
384
ページ
発行者
Wiley
販売元
John Wiley & Sons, Inc.
サイズ
32.8
MB
Nonlinear Time Series Analysis Nonlinear Time Series Analysis
2018年
Statistical Computing with R, Second Edition Statistical Computing with R, Second Edition
2019年
Hidden Markov Models for Time Series Hidden Markov Models for Time Series
2017年
Advances on Theoretical and Methodological Aspects of Probability and Statistics Advances on Theoretical and Methodological Aspects of Probability and Statistics
2019年
Machine Learning Machine Learning
2012年
Statistical Inference for Piecewise-deterministic Markov Processes Statistical Inference for Piecewise-deterministic Markov Processes
2018年
Clustering Methodology for Symbolic Data Clustering Methodology for Symbolic Data
2019年
Multivariate Nonparametric Regression and Visualization Multivariate Nonparametric Regression and Visualization
2014年
An Introduction to Statistical Computing An Introduction to Statistical Computing
2013年
Computational Statistics Computational Statistics
2012年
Statistical and Machine Learning Approaches for Network Analysis Statistical and Machine Learning Approaches for Network Analysis
2012年
Bayesian Modeling Using WinBUGS Bayesian Modeling Using WinBUGS
2011年