Application of Braid Groups In 2D Hall System Physics Application of Braid Groups In 2D Hall System Physics

Application of Braid Groups In 2D Hall System Physics

Composite Fermion Structure

Janusz Jacak その他
    • ¥4,400
    • ¥4,400

発行者による作品情報

In the present treatise progress in topological approach to Hall system physics is reported, including recent achievements in graphene. The homotopy methods of braid groups turn out to be of particular convenience in order to grasp peculiarity of 2D charged systems upon magnetic field resulting in Laughlin correlations. The real progress in understanding of structure and role of composite fermions in Hall system is provided. The crucial significance of carrier mobility apart from interaction in creation of the fractional quantum Hall effect (FQHE) is described and supported by recent graphene experiments. Recent progress in FQHE field including topological insulators and optical lattices was reviewed and commented in terms of braid group approach. The braid group methods are presented from more general point of view including proposition of pure braid group application.

ジャンル
科学/自然
発売日
2012年
7月13日
言語
EN
英語
ページ数
160
ページ
発行者
World Scientific Publishing Company
販売元
Ingram DV LLC
サイズ
5
MB
The Pauli Exclusion Principle The Pauli Exclusion Principle
2016年
From Quarks to Pions From Quarks to Pions
2018年
Universal Quantum Computing: Supervening Decoherence - Surmounting Uncertainty Universal Quantum Computing: Supervening Decoherence - Surmounting Uncertainty
2017年
TOPOLOGY IN CONDENSED MATTER: AN INTRODUCTION TOPOLOGY IN CONDENSED MATTER: AN INTRODUCTION
2021年
The Multifaceted Skyrmion The Multifaceted Skyrmion
2016年
Quantum Hall Effects Quantum Hall Effects
2013年