Applied Logistic Regression Applied Logistic Regression
Wiley Series in Probability and Statistics

Applied Logistic Regression

    • ¥18,800
    • ¥18,800

発行者による作品情報

A new edition of the definitive guide to logistic regression modeling for health science and other applications
This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables.

Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-the-art techniques for building, interpreting, and assessing the performance of LR models. New and updated features include:
A chapter on the analysis of correlated outcome data A wealth of additional material for topics ranging from Bayesian methods to assessing model fit Rich data sets from real-world studies that demonstrate each method under discussion Detailed examples and interpretation of the presented results as well as exercises throughout
Applied Logistic Regression, Third Edition is a must-have guide for professionals and researchers who need to model nominal or ordinal scaled outcome variables in public health, medicine, and the social sciences as well as a wide range of other fields and disciplines.

ジャンル
科学/自然
発売日
2013年
2月26日
言語
EN
英語
ページ数
528
ページ
発行者
Wiley
販売元
John Wiley & Sons, Inc.
サイズ
30
MB
Performing Data Analysis Using IBM SPSS Performing Data Analysis Using IBM SPSS
2013年
Data Mining and Business Analytics with R Data Mining and Business Analytics with R
2013年
Data Mining and Statistics for Decision Making Data Mining and Statistics for Decision Making
2011年
Natural Resources Biometrics Natural Resources Biometrics
2014年
Statistics Statistics
2014年
The R Book The R Book
2012年
Handbook of Regression Analysis With Applications in R Handbook of Regression Analysis With Applications in R
2020年
Reinsurance Reinsurance
2017年
Statistical Shape Analysis Statistical Shape Analysis
2016年
Multivariate Density Estimation Multivariate Density Estimation
2015年
Applied Longitudinal Analysis Applied Longitudinal Analysis
2012年
Applied Linear Regression Applied Linear Regression
2013年