Applied Univariate, Bivariate, and Multivariate Statistics Using Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python

Applied Univariate, Bivariate, and Multivariate Statistics Using Python

A Beginner's Guide to Advanced Data Analysis

    • ¥16,800
    • ¥16,800

発行者による作品情報

Applied Univariate, Bivariate, and Multivariate Statistics Using Python
A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python

Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied.

Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python.

Readers will also benefit from the inclusion of:
A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errorsAn introduction to Python, exploring how to communicate with PythonA treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data managementAn introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level
Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.

ジャンル
科学/自然
発売日
2021年
7月14日
言語
EN
英語
ページ数
304
ページ
発行者
Wiley
販売元
John Wiley & Sons, Inc.
サイズ
11.2
MB
Applied Univariate, Bivariate, and Multivariate Statistics Applied Univariate, Bivariate, and Multivariate Statistics
2015年
Data Analysis and Research for Sport and Exercise Science Data Analysis and Research for Sport and Exercise Science
2004年
Statistical Rules of Thumb Statistical Rules of Thumb
2011年
Starting Out in Statistics Starting Out in Statistics
2014年
Risk Assessment and Decision Analysis with Bayesian Networks Risk Assessment and Decision Analysis with Bayesian Networks
2018年
Multivariate Statistics and Machine Learning Multivariate Statistics and Machine Learning
2025年
Univariate, Bivariate, and Multivariate Statistics Using R Univariate, Bivariate, and Multivariate Statistics Using R
2020年
SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics
2018年
Applied Univariate, Bivariate, and Multivariate Statistics Applied Univariate, Bivariate, and Multivariate Statistics
2015年