Big Data Big Data

Big Data

Principles and best practices of scalable realtime data systems

    • ¥5,400

発行者による作品情報

Summary

Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Book

Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive.

Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases.

This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful.

What's Inside

• Introduction to big data systems
• Real-time processing of web-scale data
• Tools like Hadoop, Cassandra, and Storm
• Extensions to traditional database skills

About the Authors

Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing.

Table of Contents
• A new paradigm for Big Data

PART 1 BATCH LAYER
• Data model for Big Data
• Data model for Big Data: Illustration
• Data storage on the batch layer
• Data storage on the batch layer: Illustration
• Batch layer
• Batch layer: Illustration
• An example batch layer: Architecture and algorithms
• An example batch layer: Implementation

PART 2 SERVING LAYER
• Serving layer
• Serving layer: Illustration

PART 3 SPEED LAYER
• Realtime views
• Realtime views: Illustration
• Queuing and stream processing
• Queuing and stream processing: Illustration
• Micro-batch stream processing
• Micro-batch stream processing: Illustration
• Lambda Architecture in depth

ジャンル
コンピュータ/インターネット
発売日
2015年
4月29日
言語
EN
英語
ページ数
328
ページ
発行者
Manning
販売元
Simon & Schuster Digital Sales LLC
サイズ
9.7
MB
Hadoop in Action Hadoop in Action
2010年
SQL Server MVP Deep Dives, Volume 2 SQL Server MVP Deep Dives, Volume 2
2011年
Machine Learning Systems Machine Learning Systems
2018年
Spark in Action Spark in Action
2016年
Data Wrangling with JavaScript Data Wrangling with JavaScript
2018年
Mondrian in Action Mondrian in Action
2013年
Compassion Or Apocalypse? Compassion Or Apocalypse?
2013年
Big Data. Najlepsze praktyki budowy skalowalnych systemów obsługi danych w czasie rzeczywistym Big Data. Najlepsze praktyki budowy skalowalnych systemów obsługi danych w czasie rzeczywistym
2016年