Bornologies and Lipschitz Analysis Bornologies and Lipschitz Analysis

Bornologies and Lipschitz Analysis

    • ¥8,800
    • ¥8,800

発行者による作品情報

This monograph, for the first time in book form, considers the large structure of metric spaces as captured by bornologies: families of subsets that contain the singletons, that are stable under finite unions, and that are stable under taking subsets of its members. The largest bornology is the power set of the space and the smallest is the bornology of its finite subsets. Between these lie (among others) the metrically bounded subsets, the relatively compact subsets, the totally bounded subsets, and the Bourbaki bounded subsets.

Classes of functions are intimately connected to various bornologies; e.g., (1) a function is locally Lipschitz if and only if its restriction to each relatively compact subset is Lipschitz; (2) a subset is Bourbaki bounded if and only if each uniformly continuous function on the space is bounded when restricted to the subset. A great deal of attention is given to the variational notions of strong uniform continuity and strong uniform convergence with respect to the members of a bornology, leading to the bornology of UC-subsets and UC-spaces. Spaces on which its uniformly continuous real-valued functions are stable under pointwise product are characterized in terms of the coincidence of the Bourbaki bounded subsets with a usually larger bornology.

Special attention is given to Lipschitz and locally Lipschitz functions. For example, uniformly dense subclasses of locally Lipschitz functions within the real-valued continuous functions, Cauchy continuous functions, and uniformly continuous functions are presented. It is shown very generally that a function between metric spaces has a particular metric property if and only if whenever it is followed in a composition by a real-valued Lipschitz function, the composition has the property. Bornological convergence of nets of closed subsets, having Attouch-Wets convergence as a prototype, is considered in detail. Topologies of uniform convergence for continuous linear operators between normed spaces is explained in terms of the bornological convergence of their graphs. Finally, the idea of a bornological extension of a topological space is presented, and all regular extensions can be so realized.

ジャンル
科学/自然
発売日
2023年
5月15日
言語
EN
英語
ページ数
242
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
2.6
MB
Topology for Analysis Topology for Analysis
2012年
ELEMENT TOPOLOGY & APPL (2ND ED) ELEMENT TOPOLOGY & APPL (2ND ED)
2021年
Introductory Theory of Topological Vector SPates Introductory Theory of Topological Vector SPates
2019年
General Topology and Applications General Topology and Applications
2020年
p-adic Function Analysis p-adic Function Analysis
2020年
Modern Methods in Topological Vector Spaces Modern Methods in Topological Vector Spaces
2013年