Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

    • ¥21,800
    • ¥21,800

発行者による作品情報

Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences.

Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.

ジャンル
科学/自然
発売日
2019年
9月25日
言語
EN
英語
ページ数
320
ページ
発行者
Wiley
販売元
John Wiley & Sons, Inc.
サイズ
47.3
MB
Statistical Inference for Fractional Diffusion Processes Statistical Inference for Fractional Diffusion Processes
2011年
Monte-Carlo Methods and Stochastic Processes Monte-Carlo Methods and Stochastic Processes
2016年
Stochastic PDEs and Modelling of Multiscale Complex System Stochastic PDEs and Modelling of Multiscale Complex System
2019年
The Moment-SOS Hierarchy The Moment-SOS Hierarchy
2020年
Statistical Portfolio Estimation Statistical Portfolio Estimation
2017年
Random Evolutionary Systems Random Evolutionary Systems
2021年