Extending R Extending R
    • ¥12,800

発行者による作品情報

Up-to-Date Guidance from One of the Foremost Members of the R Core Team

Written by John M. Chambers, the leading developer of the original S software, Extending R covers key concepts and techniques in R to support analysis and research projects. It presents the core ideas of R, provides programming guidance for projects of all scales, and introduces new, valuable techniques that extend R.

The book first describes the fundamental characteristics and background of R, giving readers a foundation for the remainder of the text. It next discusses topics relevant to programming with R, including the apparatus that supports extensions. The book then extends R’s data structures through object-oriented programming, which is the key technique for coping with complexity. The book also incorporates a new structure for interfaces applicable to a variety of languages.

A reflection of what R is today, this guide explains how to design and organize extensions to R by correctly using objects, functions, and interfaces. It enables current and future users to add their own contributions and packages to R.

A 2017 Choice Outstanding Academic Title

ジャンル
科学/自然
発売日
2017年
12月19日
言語
EN
英語
ページ数
382
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
2.1
MB
Model Driven Engineering for Distributed Real-Time Embedded Systems 2009 Model Driven Engineering for Distributed Real-Time Embedded Systems 2009
2013年
Python for Bioinformatics Python for Bioinformatics
2017年
Modern Computational Finance Modern Computational Finance
2021年
The New S Language The New S Language
2018年
Statistical Models in S Statistical Models in S
2017年
Cybernetics in C++ Cybernetics in C++
2022年
Introduction to Political Analysis in R Introduction to Political Analysis in R
2025年
Displaying Time Series, Spatial, and Space-Time Data with R Displaying Time Series, Spatial, and Space-Time Data with R
2025年
Copula Additive Distributional Regression Using R Copula Additive Distributional Regression Using R
2025年
Spatio-Temporal Statistics with R Spatio-Temporal Statistics with R
2019年
Microeconometrics with R Microeconometrics with R
2025年
Statistical Inference via Data Science Statistical Inference via Data Science
2025年