Field Theory Field Theory

Field Theory

A Path Integral Approach

    • ¥7,400
    • ¥7,400

発行者による作品情報

This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.

All the existing chapters of the previous edition have been expanded for more clarity. The chapter on anomalies and the Schwinger model has been completely rewritten for better logical clarity. Two new chapters have been added at the request of students and faculty worldwide. The first describes Schwinger's proper time method with simple examples both at zero and at finite temperature while the second develops the idea of zeta function regularization with simple examples.

This latest edition is a comprehensive and much expanded version of the original text.
Contents: IntroductionPath Integrals and Quantum MechanicsHarmonic OscillatorGenerating FunctionalPath Integrals for FermionsSupersymmetrySemi-Classical MethodsPath Integral for the Double WellPath Integral for Relativistic TheoriesEffective ActionInvariances and Their ConsequencesGauge TheoriesAnomaliesSystems at Finite TemperatureIsing ModelProper Time FormalismZeta Function RegularizationIndex
Readership: Researchers and practitioners in high energy, theoretical and quantum physics.Path Integrals;Harmonic Oscillator;Fermions;Supersymmetry;Double Well;Ising Model00

ジャンル
科学/自然
発売日
2019年
2月22日
言語
EN
英語
ページ数
488
ページ
発行者
World Scientific Publishing Company
販売元
Ingram DV LLC
サイズ
65.1
MB
Introduction To Covariant Quantum Gravity And Asymptotic Safety, An Introduction To Covariant Quantum Gravity And Asymptotic Safety, An
2017年
Techniques and Applications of Path Integration Techniques and Applications of Path Integration
2012年
Path Integrals for Pedestrians Path Integrals for Pedestrians
2015年
An Introduction to the Functional Formulation of Quantum Mechanics An Introduction to the Functional Formulation of Quantum Mechanics
2013年
Quantum Fractals: From Heisenberg's Uncertainty To Barnsley's Fractality Quantum Fractals: From Heisenberg's Uncertainty To Barnsley's Fractality
2014年
Xviith International Congress On Mathematical Physics Xviith International Congress On Mathematical Physics
2013年
FINIT TEMPER FIELD THEO (2ND ED) FINIT TEMPER FIELD THEO (2ND ED)
2023年
Lectures on Quantum Field Theory Lectures on Quantum Field Theory
2020年
Lie Groups And Lie Algebras For Physicists Lie Groups And Lie Algebras For Physicists
2014年
Lectures on Electromagnetism Lectures on Electromagnetism
2013年