Generalized Additive Models Generalized Additive Models
    • ¥24,800

発行者による作品情報

This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

ジャンル
科学/自然
発売日
2017年
10月19日
言語
EN
英語
ページ数
352
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
8.2
MB
Smoothing and Regression Smoothing and Regression
2013年
Flexible Regression and Smoothing Flexible Regression and Smoothing
2017年
Handbook of Regression Methods Handbook of Regression Methods
2018年
Elements of Statistical Computing Elements of Statistical Computing
2017年
Introduction to Functional Data Analysis Introduction to Functional Data Analysis
2017年
Methods and Applications of Linear Models Methods and Applications of Linear Models
2013年
Hierarchical Modeling and Analysis for Spatial Data Hierarchical Modeling and Analysis for Spatial Data
2025年
Robust Small Area Estimation Robust Small Area Estimation
2025年
Robust Nonparametric Statistical Methods Robust Nonparametric Statistical Methods
2010年
Statistical Methods for Stochastic Differential Equations Statistical Methods for Stochastic Differential Equations
2012年
Maximum Likelihood Estimation for Sample Surveys Maximum Likelihood Estimation for Sample Surveys
2012年
Components of Variance Components of Variance
2002年