High Performance Visualization High Performance Visualization
Chapman & Hall/CRC Computational Science

High Performance Visualization

Enabling Extreme-Scale Scientific Insight

E. Wes Bethel その他
    • ¥9,800
    • ¥9,800

発行者による作品情報

Visualization and analysis tools, techniques, and algorithms have undergone a rapid evolution in recent decades to accommodate explosive growth in data size and complexity and to exploit emerging multi- and many-core computational platforms. High Performance Visualization: Enabling Extreme-Scale Scientific Insight focuses on the subset of scientific visualization concerned with algorithm design, implementation, and optimization for use on today’s largest computational platforms.

The book collects some of the most seminal work in the field, including algorithms and implementations running at the highest levels of concurrency and used by scientific researchers worldwide. After introducing the fundamental concepts of parallel visualization, the book explores approaches to accelerate visualization and analysis operations on high performance computing platforms. Looking to the future and anticipating changes to computational platforms in the transition from the petascale to exascale regime, it presents the main research challenges and describes several contemporary, high performance visualization implementations.

Reflecting major concepts in high performance visualization, this book unifies a large and diverse body of computer science research, development, and practical applications. It describes the state of the art at the intersection of scientific visualization, large data, and high performance computing trends, giving readers the foundation to apply the concepts and carry out future research in this area.

ジャンル
コンピュータ/インターネット
発売日
2012年
10月25日
言語
EN
英語
ページ数
520
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
6.6
MB
High Performance Computing High Performance Computing
2010年
Introduction to Scheduling Introduction to Scheduling
2009年
Computational Methods in Plasma Physics Computational Methods in Plasma Physics
2010年
Grid Computing Grid Computing
2009年
Peer-to-Peer Computing Peer-to-Peer Computing
2011年
Data-Intensive Science Data-Intensive Science
2016年