IBM Data Engine for Hadoop and Spark IBM Data Engine for Hadoop and Spark

IBM Data Engine for Hadoop and Spark

Dino Quintero その他

発行者による作品情報

This IBM® Redbooks® publication provides topics to help the technical community take advantage of the resilience, scalability, and performance of the IBM Power Systems™ platform to implement or integrate an IBM Data Engine for Hadoop and Spark solution for analytics solutions to access, manage, and analyze data sets to improve business outcomes.

This book documents topics to demonstrate and take advantage of the analytics strengths of the IBM POWER8® platform, the IBM analytics software portfolio, and selected third-party tools to help solve customer's data analytic workload requirements. This book describes how to plan, prepare, install, integrate, manage, and show how to use the IBM Data Engine for Hadoop and Spark solution to run analytic workloads on IBM POWER8. In addition, this publication delivers documentation to complement available IBM analytics solutions to help your data analytic needs.

This publication strengthens the position of IBM analytics and big data solutions with a well-defined and documented deployment model within an IBM POWER8 virtualized environment so that customers have a planned foundation for security, scaling, capacity, resilience, and optimization for analytics workloads.

This book is targeted at technical professionals (analytics consultants, technical support staff, IT Architects, and IT Specialists) that are responsible for delivering analytics solutions and support on IBM Power Systems.

ジャンル
コンピュータ/インターネット
発売日
2016年
8月24日
言語
EN
英語
ページ数
122
ページ
発行者
IBM Redbooks
販売元
International Business Machines Corp
サイズ
3.5
MB
IBM Platform Computing Solutions for High Performance and Technical Computing Workloads IBM Platform Computing Solutions for High Performance and Technical Computing Workloads
2015年
Implementing IBM InfoSphere BigInsights on IBM System x Implementing IBM InfoSphere BigInsights on IBM System x
2013年
IBM Software Defined Infrastructure for Big Data Analytics Workloads IBM Software Defined Infrastructure for Big Data Analytics Workloads
2015年
AI and Big Data on IBM Power Systems Servers AI and Big Data on IBM Power Systems Servers
2019年
Enterprise Data Warehouse Optimization with Hadoop on IBM Power Systems Servers Enterprise Data Warehouse Optimization with Hadoop on IBM Power Systems Servers
2018年
Implementing IBM Spectrum Scale Implementing IBM Spectrum Scale
2015年
IBM Power Systems High Availability and Disaster Recovery Updates: Planning for a Multicloud Environment IBM Power Systems High Availability and Disaster Recovery Updates: Planning for a Multicloud Environment
2022年
IBM Power Systems Virtual Server Guide for IBM i IBM Power Systems Virtual Server Guide for IBM i
2022年
Asynchronous Geographic Logical Volume Mirroringm Best Practices for Cloud Deployment Asynchronous Geographic Logical Volume Mirroringm Best Practices for Cloud Deployment
2022年
Cloud Backup Management with PowerHA SystemMirror Cloud Backup Management with PowerHA SystemMirror
2021年
An Implementation of Red Hat OpenShift Network Isolation Using Multiple Ingress Controllers An Implementation of Red Hat OpenShift Network Isolation Using Multiple Ingress Controllers
2021年
SAP HANA on IBM Power Systems Backup and Recovery Solutions SAP HANA on IBM Power Systems Backup and Recovery Solutions
2021年
IBM Spectrum Scale: Big Data and Analytics  Solution Brief IBM Spectrum Scale: Big Data and Analytics  Solution Brief
2019年
IBM Software Defined Infrastructure for Big Data Analytics Workloads IBM Software Defined Infrastructure for Big Data Analytics Workloads
2015年
Apache Spark for the Enterprise: Setting the Business Free Apache Spark for the Enterprise: Setting the Business Free
2016年
The Complete Review Of Data Warehousing and Big Data From OpenWorld 2018 The Complete Review Of Data Warehousing and Big Data From OpenWorld 2018
2018年
Performance and Capacity Implications for Big Data Performance and Capacity Implications for Big Data
2014年
Data Warehousing and Big Data #OOW16 Data Warehousing and Big Data #OOW16
2016年