Introduction to Arnold’s Proof of the Kolmogorov–Arnold–Moser Theorem Introduction to Arnold’s Proof of the Kolmogorov–Arnold–Moser Theorem

Introduction to Arnold’s Proof of the Kolmogorov–Arnold–Moser Theorem

    • ¥8,800
    • ¥8,800

発行者による作品情報

INTRODUCTION TO ARNOLD’S PROOF OF THE KOLMOGOROV–ARNOLD–MOSER THEOREM

This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem, proves the famous Liouville–Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals.

Features

• Applies concepts and theorems from real and complex analysis (e.g., Fourier series and implicit function theorem) and topology in the framework of this key theorem from mathematical physics.

• Covers all aspects of Arnold’s proof, including those often left out in more general or simplifi ed presentations.

• Discusses in detail the ideas used in the proof of the KAM theorem and puts them in historical context (e.g., mapping degree from algebraic topology).

ジャンル
科学/自然
発売日
2022年
7月8日
言語
EN
英語
ページ数
217
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
4.7
MB
Finite or Infinite Dimensional Complex Analysis Finite or Infinite Dimensional Complex Analysis
2019年
Classical and Quantum Models and Arithmetic Problems Classical and Quantum Models and Arithmetic Problems
2018年
Fourier Analysis Fourier Analysis
2020年
Clifford Algebras in Analysis and Related Topics Clifford Algebras in Analysis and Related Topics
2018年
Analysis And Mathematical Physics Analysis And Mathematical Physics
2016年
Hamiltonian Dynamical Systems Hamiltonian Dynamical Systems
2020年