Knowledge Graphs Knowledge Graphs
Adaptive Computation and Machine Learning series

Knowledge Graphs

Fundamentals, Techniques, and Applications

Mayank Kejriwal その他
    • ¥5,800
    • ¥5,800

発行者による作品情報

A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence.

The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.

ジャンル
コンピュータ/インターネット
発売日
2021年
3月30日
言語
EN
英語
ページ数
568
ページ
発行者
MIT Press
販売元
Penguin Random House LLC
サイズ
32.2
MB
Data-Driven Security Data-Driven Security
2014年
Data Science and Big Data Analytics Data Science and Big Data Analytics
2015年
Developing Analytic Talent Developing Analytic Talent
2014年
Using Linked Data Effectively Using Linked Data Effectively
2013年
Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started
2017年
Essays in Personalizable Software Essays in Personalizable Software
2011年
Deep Learning Deep Learning
2016年
Machine Learning from Weak Supervision Machine Learning from Weak Supervision
2022年
Reinforcement Learning, second edition Reinforcement Learning, second edition
2018年
Foundations of Computer Vision Foundations of Computer Vision
2024年
Probabilistic Machine Learning Probabilistic Machine Learning
2023年
Probabilistic Machine Learning Probabilistic Machine Learning
2022年