Local Polynomial Modelling and Its Applications Local Polynomial Modelling and Its Applications
Chapman & Hall/CRC Monographs on Statistics and Applied Probability

Local Polynomial Modelling and Its Applications

Monographs on Statistics and Applied Probability 66

    • ¥30,800
    • ¥30,800

発行者による作品情報

Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.

ジャンル
科学/自然
発売日
2018年
5月2日
言語
EN
英語
ページ数
360
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
13.6
MB
Smoothing and Regression Smoothing and Regression
2013年
Flexible Regression and Smoothing Flexible Regression and Smoothing
2017年
Handbook of Quantile Regression Handbook of Quantile Regression
2017年
Kernel Smoothing Kernel Smoothing
2017年
Robust Statistical Methods with R, Second Edition Robust Statistical Methods with R, Second Edition
2019年
Handbook of Regression Methods Handbook of Regression Methods
2018年
Hierarchical Modeling and Analysis for Spatial Data Hierarchical Modeling and Analysis for Spatial Data
2025年
Robust Small Area Estimation Robust Small Area Estimation
2025年
Robust Nonparametric Statistical Methods Robust Nonparametric Statistical Methods
2010年
Statistical Methods for Stochastic Differential Equations Statistical Methods for Stochastic Differential Equations
2012年
Maximum Likelihood Estimation for Sample Surveys Maximum Likelihood Estimation for Sample Surveys
2012年
Components of Variance Components of Variance
2002年