Machine Learning for Semiconductor Materials Machine Learning for Semiconductor Materials
Emerging Materials and Technologies

Machine Learning for Semiconductor Materials

Neeraj Gupta その他
    • ¥10,800
    • ¥10,800

発行者による作品情報

Machine Learning for Semiconductor Materials studies recent techniques and methods of machine learning to mitigate the use of technology computer-aided design (TCAD). It provides various algorithms of machine learning, such as regression, decision tree, support vector machine, K-means clustering and so forth. This book also highlights semiconductor materials and their uses in multi-gate devices and the analog and radio-frequency (RF) behaviours of semiconductor devices with different materials.

Features:
Focuses on semiconductor materials and the use of machine learning to facilitate understanding and decision-making Covers RF and noise analysis to formulate the frequency behaviour of semiconductor devices at high frequency Explores pertinent biomolecule detection methods Reviews recent methods in the field of machine learning for semiconductor materials with real-life applications Examines the limitations of existing semiconductor materials and steps to overcome the limitations of existing TCAD software
This book is aimed at researchers and graduate students in semiconductor materials, machine learning and electrical engineering.

ジャンル
職業/技術
発売日
2025年
8月22日
言語
EN
英語
ページ数
226
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
14.2
MB
Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications
2024年
Jivan Ek Anbujh Paheli (जीवन एक अनबूझ पहेली) Jivan Ek Anbujh Paheli (जीवन एक अनबूझ पहेली)
2022年
Renewable Energy Integration to the Grid Renewable Energy Integration to the Grid
2022年
Smart Polymers Smart Polymers
2025年
Boron Nitride Nanostructures Boron Nitride Nanostructures
2025年
Emerging Materials for Biofuel Developments Emerging Materials for Biofuel Developments
2025年
Nanostructured Materials for Energy Applications Nanostructured Materials for Energy Applications
2025年
Handbook of High Entropy Alloys Handbook of High Entropy Alloys
2025年
Multilayer Nanostructured Wear-Resistant Coatings for Metal-Cutting Tools Multilayer Nanostructured Wear-Resistant Coatings for Metal-Cutting Tools
2025年