Mahout in Action Mahout in Action

Mahout in Action

Sean Owen その他
    • ¥4,800
    • ¥4,800

発行者による作品情報

Summary

Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook.
About the Technology
A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others.
About this Book
This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework.

This book is written for developers familiar with Java -- no prior experience with Mahout is assumed.

Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book.
What's Inside
• Use group data to make individual recommendations
• Find logical clusters within your data
• Filter and refine with on-the-fly classification
• Free audio and video extras


Table of Contents
• Meet Apache Mahout

PART 1 RECOMMENDATIONS
• Introducing recommenders
• Representing recommender data
• Making recommendations
• Taking recommenders to production
• Distributing recommendation computations

PART 2 CLUSTERING
• Introduction to clustering
• Representing data
• Clustering algorithms in Mahout
• Evaluating and improving clustering quality
• Taking clustering to production
• Real-world applications of clustering

PART 3 CLASSIFICATION
• Introduction to classification
• Training a classifier
• Evaluating and tuning a classifier
• Deploying a classifier
• Case study: Shop It To Me

ジャンル
コンピュータ/インターネット
発売日
2011年
10月4日
言語
EN
英語
ページ数
416
ページ
発行者
Manning
販売元
Simon & Schuster Digital Sales LLC
サイズ
8.4
MB
Real-World Machine Learning Real-World Machine Learning
2016年
Data Mining Data Mining
2019年
Deep Learning Deep Learning
2022年
Recommender Systems Recommender Systems
2021年
Machine Learning for Business Analytics Machine Learning for Business Analytics
2023年
Data Science Handbook Data Science Handbook
2022年
Zaawansowana analiza danych w PySpark. Metody przetwarzania informacji na szeroką skalę z wykorzystaniem Pythona i systemu Spark Zaawansowana analiza danych w PySpark. Metody przetwarzania informacji na szeroką skalę z wykorzystaniem Pythona i systemu Spark
2023年
Spark. Zaawansowana analiza danych Spark. Zaawansowana analiza danych
2015年