Math for Deep Learning Math for Deep Learning

Math for Deep Learning

What You Need to Know to Understand Neural Networks

    • ¥4,800
    • ¥4,800

発行者による作品情報

Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.

With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. 

You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.

In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

 

ジャンル
コンピュータ/インターネット
発売日
2021年
11月23日
言語
EN
英語
ページ数
344
ページ
発行者
No Starch Press
販売元
Penguin Random House LLC
サイズ
26.8
MB
数式なしでわかるAIのしくみ 魔法から科学へ 数式なしでわかるAIのしくみ 魔法から科学へ
2024年
Practical Deep Learning Practical Deep Learning
2021年
How Deep Learning Works How Deep Learning Works
2026年
Practical Deep Learning, 2nd Edition Practical Deep Learning, 2nd Edition
2025年
Math for Programming Math for Programming
2025年
How AI Works How AI Works
2023年
Deep Learning Deep Learning
2021年
Dive Into Algorithms Dive Into Algorithms
2021年
Bayesian Statistics the Fun Way Bayesian Statistics the Fun Way
2019年
Why Machines Learn Why Machines Learn
2024年
Python Crash Course, 3rd Edition Python Crash Course, 3rd Edition
2015年
Helgoland Helgoland
2021年