Morse Theory of Gradient Flows, Concavity and Complexity on Manifolds with Boundary Morse Theory of Gradient Flows, Concavity and Complexity on Manifolds with Boundary

Morse Theory of Gradient Flows, Concavity and Complexity on Manifolds with Boundary

    • ¥16,800
    • ¥16,800

発行者による作品情報

This monograph is an account of the author's investigations of gradient vector flows on compact manifolds with boundary. Many mathematical structures and constructions in the book fit comfortably in the framework of Morse Theory and, more generally, of the Singularity Theory of smooth maps.

The geometric and combinatorial structures, arising from the interactions of vector flows with the boundary of the manifold, are surprisingly rich. This geometric setting leads organically to many encounters with Singularity Theory, Combinatorics, Differential Topology, Differential Geometry, Dynamical Systems, and especially with the boundary value problems for ordinary differential equations. This diversity of connections animates the book and is the main motivation behind it.

The book is divided into two parts. The first part describes the flows in three dimensions. It is more pictorial in nature. The second part deals with the multi-dimensional flows, and thus is more analytical. Each of the nine chapters starts with a description of its purpose and main results. This organization provides the reader with independent entrances into different chapters.
Contents:PrefaceAcknowledgmentsFlows in 2D and 3D:A Prelude in 2D: Flows in FlatlandVector Fields, Morse Stratifications, and Gradient Spines of 3-foldsConcavity and Complexity of Traversing Flows on 3-foldsDeformations of Traversing Flows in 3D and Modifications of Gradient SpinesHigh-dimensional Flows:Stratified Convexity and Concavity of Flows on Manifolds with BoundaryTraversally Generic and Versal Flows: Semi-algebraic Models of TangencyCombinatorics of Tangency: the Stratified Spaces of Real PolynomialsComplexity of Shadows and Traversing Flows in Terms of the Simplicial VolumeThe Burnside Ring-valued Morse Formula for Equivariant Vector Fields
Readership: Graduate students and researchers specialized in geometric topology, singularity theory and dynamical systems.Morse Theory;Gradient Flows;Boundary Effects;Convexity;Complexity0Key Features:The text is unique in its subject and approachThe results are novel and have a nice geometrical flavorThe book is richly illustrated to help readers visualize ideas and statements

ジャンル
科学/自然
発売日
2019年
8月21日
言語
EN
英語
ページ数
516
ページ
発行者
World Scientific Publishing Company
販売元
Ingram DV LLC
サイズ
13.7
MB
Foliations 2012 - Proceedings Of The International Conference Foliations 2012 - Proceedings Of The International Conference
2013年
Differential Geometry of Manifolds Differential Geometry of Manifolds
2019年
Geometry of Classical Fields Geometry of Classical Fields
2011年
Handbook of Complex Analysis Handbook of Complex Analysis
2022年
Minimal Submanifolds and Related Topics Minimal Submanifolds and Related Topics
2018年
Differential Geometry: Questions and Answers (2020 Edition) Differential Geometry: Questions and Answers (2020 Edition)
2019年
Avec des jouets par milliers Avec des jouets par milliers
2025年
Excaliber - Tome 2 La guerre des couronnes Excaliber - Tome 2 La guerre des couronnes
2025年
Dehors tu vas avoir si froid -  Prix du roman d'aventures Dehors tu vas avoir si froid -  Prix du roman d'aventures
2024年
Excaliber - La fabrique des rois - Tome 1 Excaliber - La fabrique des rois - Tome 1
2024年
Le puits des mémoires - Tome 1 La traque Le puits des mémoires - Tome 1 La traque
2011年
La part des ombres - tome 02 La part des ombres - tome 02
2018年