Multi-Label Dimensionality Reduction Multi-Label Dimensionality Reduction
Chapman & Hall/CRC Machine Learning & Pattern Recognition

Multi-Label Dimensionality Reduction

Liang Sun その他
    • ¥9,800
    • ¥9,800

発行者による作品情報

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks

ジャンル
ビジネス/マネー
発売日
2016年
4月19日
言語
EN
英語
ページ数
208
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
4.6
MB
Data Science and Machine Learning Data Science and Machine Learning
2025年
A Concise Introduction to Machine Learning A Concise Introduction to Machine Learning
2025年
Multilinear Subspace Learning Multilinear Subspace Learning
2013年
Ensemble Methods Ensemble Methods
2025年
Machine Learning, Animated Machine Learning, Animated
2023年
The Pragmatic Programmer for Machine Learning The Pragmatic Programmer for Machine Learning
2023年