Multiplicative Differential Calculus Multiplicative Differential Calculus
Textbooks in Mathematics

Multiplicative Differential Calculus

    • ¥10,800
    • ¥10,800

Publisher Description

This book is devoted to the multiplicative differential calculus. Its seven pedagogically organized chapters summarize the most recent contributions in this area, concluding with a section of practical problems to be assigned or for self-study.

Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. From 1967 till 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. It is also called an alternative or non-Newtonian calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics, finance, biology, and engineering.

Multiplicative Differential Calculus is written to be of interest to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It is primarily a textbook at the senior undergraduate and beginning graduate level and may be used for a course on differential calculus. It is also for students studying engineering and science.

Authors

Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. He is also the author of Dynamic Geometry of Time Scales (CRC Press). He is a co-author of Conformable Dynamic Equations on Time Scales, with Douglas R. Anderson (CRC Press).

Khaled Zennir earned his PhD in mathematics from Sidi Bel Abbès University, Algeria. He earned his highest diploma in Habilitation in Mathematics from Constantine University, Algeria. He is currently Assistant Professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.

The authors have also published: Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDE; Boundary Value Problems on Time Scales, Volume 1 and Volume II, all with CRC Press.

GENRE
Science & Nature
RELEASED
2022
July 4
LANGUAGE
EN
English
LENGTH
216
Pages
PUBLISHER
CRC Press
SELLER
Taylor & Francis Group
SIZE
3.3
MB
Multiplicative Differential Geometry Multiplicative Differential Geometry
2022
Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs
2020
Neutrices and External Numbers Neutrices and External Numbers
2019
Introductory Mathematical Analysis for Quantitative Finance Introductory Mathematical Analysis for Quantitative Finance
2020
Mathematical Analysis Mathematical Analysis
2012
Polynomial Operator Equations in Abstract Spaces and Applications Polynomial Operator Equations in Abstract Spaces and Applications
2020
Fuzzy Impulsive Dynamic Equations on Time Scales Fuzzy Impulsive Dynamic Equations on Time Scales
2025
Boundary Value Problems on Time Scales, Volume I Boundary Value Problems on Time Scales, Volume I
2021
Boundary Value Problems on Time Scales, Volume II Boundary Value Problems on Time Scales, Volume II
2021
Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs
2020
Fourier Series and Boundary Value Problems with Engineering Applications Fourier Series and Boundary Value Problems with Engineering Applications
2025
Lectures on Differential Geometry with Maple Lectures on Differential Geometry with Maple
2025
An Invitation to Real Analysis An Invitation to Real Analysis
2025
Math Anxiety—How to Beat It! Math Anxiety—How to Beat It!
2025
Real and Complex Analysis Real and Complex Analysis
2009
A Course in Real Analysis A Course in Real Analysis
2015