Multivariate Density Estimation Multivariate Density Estimation
Wiley Series in Probability and Statistics

Multivariate Density Estimation

Theory, Practice, and Visualization

    • ¥14,800
    • ¥14,800

Publisher Description

Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods

Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis.

The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features:
Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets
Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.

GENRE
Science & Nature
RELEASED
2015
March 12
LANGUAGE
EN
English
LENGTH
384
Pages
PUBLISHER
Wiley
SELLER
John Wiley & Sons, Inc.
SIZE
32
MB
Density Estimation for Statistics and Data Analysis Density Estimation for Statistics and Data Analysis
2018
Generalized Additive Models Generalized Additive Models
2017
Kernel Smoothing Kernel Smoothing
2017
Local Polynomial Modelling and Its Applications Local Polynomial Modelling and Its Applications
2018
Statistical Data Analytics Statistical Data Analytics
2015
Data Analysis Data Analysis
2013
Unlikely Friends Unlikely Friends
2021
The Practice of Mission in Global Methodism The Practice of Mission in Global Methodism
2021
Statistics Statistics
2020
Handbook of Regression Analysis With Applications in R Handbook of Regression Analysis With Applications in R
2020
Reinsurance Reinsurance
2017
Statistical Shape Analysis Statistical Shape Analysis
2016
Applied Longitudinal Analysis Applied Longitudinal Analysis
2012
Applied Linear Regression Applied Linear Regression
2013
Sample Size Determination and Power Sample Size Determination and Power
2013