Practical Guide To Principal Component Methods in R Practical Guide To Principal Component Methods in R

Practical Guide To Principal Component Methods in R

Principal Component Analysis and Correspondence Analysis

    • ¥3,400
    • ¥3,400

発行者による作品情報

This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component analysis methods (PCMs) in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.

ジャンル
コンピュータ/インターネット
発売日
2017年
11月25日
言語
EN
英語
ページ数
118
ページ
発行者
AK
販売元
Alboukadel Kassambara
サイズ
6.6
MB
Multivariate Data Integration Using R Multivariate Data Integration Using R
2021年
R in Action R in Action
2015年
R in Action, Third Edition R in Action, Third Edition
2022年
Advances in Data Science Advances in Data Science
2020年
Exploratory Data Analysis Using R Exploratory Data Analysis Using R
2018年
Multivariate Analysis for the Biobehavioral and Social Sciences Multivariate Analysis for the Biobehavioral and Social Sciences
2011年
Network Analysis and Visualization in R Network Analysis and Visualization in R
2017年
Practical Guide To Cluster Analysis in R Practical Guide To Cluster Analysis in R
2017年
R Graphics Essentials for Great Data Visualization R Graphics Essentials for Great Data Visualization
2017年