Statistical Inference in Multifractal Random Walk Models for Financial Time Series Statistical Inference in Multifractal Random Walk Models for Financial Time Series

Statistical Inference in Multifractal Random Walk Models for Financial Time Series

    • ¥4,800
    • ¥4,800

発行者による作品情報

The dynamics of financial returns varies with the return period, from high-frequency data to daily, quarterly or annual data. Multifractal Random Walk models can capture the statistical relation between returns and return periods, thus facilitating a more accurate representation of real price changes. This book provides a generalized method of moments estimation technique for the model parameters with enhanced performance in finite samples, and a novel testing procedure for multifractality. The resource-efficient computer-based manipulation of large datasets is a typical challenge in finance. In this connection, this book also proposes a new algorithm for the computation of heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators that can cope with large datasets.

ジャンル
ビジネス/マネー
発売日
2011年
4月15日
言語
EN
英語
ページ数
102
ページ
発行者
Peter Lang AG
販売元
Peter Lang AG
サイズ
2.5
MB
Handbook of Modeling High-Frequency Data in Finance Handbook of Modeling High-Frequency Data in Finance
2011年
Handbook of High-Frequency Trading and Modeling in Finance Handbook of High-Frequency Trading and Modeling in Finance
2016年
Forecasting Economic Time Series Using Locally Stationary Processes Forecasting Economic Time Series Using Locally Stationary Processes
2012年
Developing Econometrics Developing Econometrics
2011年
Financial Mathematics, Volatility and Covariance Modelling Financial Mathematics, Volatility and Covariance Modelling
2019年
Extreme Financial Risks And Asset Allocation Extreme Financial Risks And Asset Allocation
2014年