Statistical Modeling and Machine Learning for Molecular Biology Statistical Modeling and Machine Learning for Molecular Biology
Chapman & Hall/CRC Mathematical and Computational Biology

Statistical Modeling and Machine Learning for Molecular Biology

    • ¥11,800
    • ¥11,800

発行者による作品情報

Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics.

ジャンル
コンピュータ/インターネット
発売日
2017年
1月6日
言語
EN
英語
ページ数
280
ページ
発行者
CRC Press
販売元
Taylor & Francis Group
サイズ
7.1
MB
The R Book The R Book
2022年
MACHINE LEARNING - A JOURNEY TO DEEP LEARNING MACHINE LEARNING - A JOURNEY TO DEEP LEARNING
2021年
Data Mining for Bioinformatics Data Mining for Bioinformatics
2012年
Statistical Data Science Statistical Data Science
2018年
An Introduction to Lifted Probabilistic Inference An Introduction to Lifted Probabilistic Inference
2021年
Inductive Learning Algorithms for Complex Systems Modeling Inductive Learning Algorithms for Complex Systems Modeling
2019年
Big Data in Omics and Imaging Big Data in Omics and Imaging
2017年
Computational Exome and Genome Analysis Computational Exome and Genome Analysis
2017年
Introduction to Proteins Introduction to Proteins
2018年
Mathematical Models of Plant-Herbivore Interactions Mathematical Models of Plant-Herbivore Interactions
2017年
Python for Bioinformatics Python for Bioinformatics
2017年
An Introduction to Physical Oncology An Introduction to Physical Oncology
2017年