Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators
Wiley Series in Probability and Statistics

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

    • ¥12,800
    • ¥12,800

発行者による作品情報

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA).

The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis.

This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

ジャンル
科学/自然
発売日
2015年
4月7日
言語
EN
英語
ページ数
368
ページ
発行者
Wiley
販売元
John Wiley & Sons, Inc.
サイズ
56.8
MB
Numerical Analysis for Applied Science Numerical Analysis for Applied Science
2019年
Generalized Ordinary Differential Equations in Abstract Spaces and Applications Generalized Ordinary Differential Equations in Abstract Spaces and Applications
2021年
Complex Analysis Complex Analysis
2015年
Theoretical Numerical Analysis Theoretical Numerical Analysis
2019年
Mathematical Analysis and Applications Mathematical Analysis and Applications
2018年
Continuous Semi-Markov Processes Continuous Semi-Markov Processes
2013年
Handbook of Regression Analysis With Applications in R Handbook of Regression Analysis With Applications in R
2020年
Reinsurance Reinsurance
2017年
Statistical Shape Analysis Statistical Shape Analysis
2016年
Multivariate Density Estimation Multivariate Density Estimation
2015年
Applied Longitudinal Analysis Applied Longitudinal Analysis
2012年
Applied Linear Regression Applied Linear Regression
2013年