Tensors for Physics Tensors for Physics
    • 59,99 €

Publisher Description

This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics,  at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to  tensors of any rank, at graduate level.  Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-trace formulas, coupling of irreducible tensors, rotation of tensors. Constitutive laws for optical, elastic and viscous properties of anisotropic media are dealt with.  The anisotropic media include crystals, liquid crystals and isotropic fluids, rendered anisotropic  by external orienting fields. The dynamics of tensors deals with phenomena of current research.  In the last section,  the 3D Maxwell equations are reformulated in their 4D version,  in accord with special relativity.

GENRE
Science & Nature
RELEASED
2015
25 April
LANGUAGE
EN
English
LENGTH
457
Pages
PUBLISHER
Springer International Publishing
SIZE
10.7
MB

More Books by Siegfried Hess

Other Books in This Series

Telescopes and Techniques Telescopes and Techniques
2012
Modern Thermodynamics and Statistical Mechanics Modern Thermodynamics and Statistical Mechanics
2024
Solved Problems and Systematic Introduction to Special Relativity Solved Problems and Systematic Introduction to Special Relativity
2024
Group Theory in Physics Group Theory in Physics
2024
Mathematics for Natural Scientists II Mathematics for Natural Scientists II
2024
The Fundamentals of Newtonian Mechanics The Fundamentals of Newtonian Mechanics
2023