Estimating LDL Apob: Infomania Or Clinical Advance?(Editorial) (Clinical Report) Estimating LDL Apob: Infomania Or Clinical Advance?(Editorial) (Clinical Report)

Estimating LDL Apob: Infomania Or Clinical Advance?(Editorial) (Clinical Report‪)‬

Clinical Chemistry, 2008, May, 54, 5

    • 2,99 €
    • 2,99 €

Publisher Description

Epidemiological and clinical studies have consistently demonstrated that increased concentrations of LDL cholesterol in plasma are associated with increased risk of atherosclerotic cardiovascular disease (CVD). [1] The reference method for LDL cholesterol is [beta]-quantification, a method developed by the CDC that requires ultracentrifugation and is accordingly labor intensive, time consuming, and expensive. Thus, in routine clinical laboratory practice, LDL cholesterol is estimated by the Friedewald formula (1). This equation requires the measurement of total cholesterol, HDL cholesterol, and triglycerides, together with a calculation factor that estimates the concentration of cholesterol in very-low-density lipoprotein (VLDL). However, this formula is not valid for nonfasting patients, when plasma triglyceride concentrations are [greater than or equal to] 4.5 mmol/L (400 mg/dL), in familial dysbetalipoproteinemia, or when there is abnormal VLDL composition. Direct measures of LDL cholesterol are available, but they are not standardized and are expensive. Apolipoprotein B (apoB), a large amphipathic glycoprotein, plays a central role in human lipoprotein metabolism (2). The APOB gene is located on chromosome 2 and produces, via a unique mRNA editing process, two forms of apoB in circulating lipoproteins, apoB-48 and apoB-100 (3). ApoB-48 is the truncated form of apoB-100 consisting of the N-terminal 48% of full-length apoB-100. ApoB-48 is synthesized in the intestine and is essential for the formation and secretion of chylomicrons. ApoB-100 is synthesized in the liver and is an essential structural and functional component of VLDL and its metabolic products, intermediate-density lipoprotein (IDL) and LDL, being the ligand for the LDL receptor.

GENRE
Science & Nature
RELEASED
2008
1 May
LANGUAGE
EN
English
LENGTH
9
Pages
PUBLISHER
American Association for Clinical Chemistry, Inc.
SIZE
167.8
KB

More Books by Clinical Chemistry

D-Dimer Testing for Deep Venous Thrombosis: A Metaanalysis (Clinical Report) D-Dimer Testing for Deep Venous Thrombosis: A Metaanalysis (Clinical Report)
2004
Congenital Analbuminemia Attributable to Compound Heterozygosity for Novel Mutations in the Albumin Gene (Technical Briefs) Congenital Analbuminemia Attributable to Compound Heterozygosity for Novel Mutations in the Albumin Gene (Technical Briefs)
2005
Highly Sensitive Immunoprecipitation Method for Extracting and Concentrating Low-Abundance Proteins from Human Serum (Technical Briefs) Highly Sensitive Immunoprecipitation Method for Extracting and Concentrating Low-Abundance Proteins from Human Serum (Technical Briefs)
2005
Measurement of Pro-C-Type Natriuretic Peptide in Plasma (Technical Briefs) Measurement of Pro-C-Type Natriuretic Peptide in Plasma (Technical Briefs)
2005
Newborn Screening for Lysosomal Storage Disorders (Editorials) Newborn Screening for Lysosomal Storage Disorders (Editorials)
2005
Inadequate Attempts to Measure the Microheterogeneity of Transthyretin by Low-Resolution Mass Spectrometry (Letters) (Letter to the Editor) Inadequate Attempts to Measure the Microheterogeneity of Transthyretin by Low-Resolution Mass Spectrometry (Letters) (Letter to the Editor)
2005