Lactic acid fermentation of human excreta for agricultural application Lactic acid fermentation of human excreta for agricultural application
IHE Delft PhD Thesis Series

Lactic acid fermentation of human excreta for agricultural application

    • 109,99 €
    • 109,99 €

Publisher Description

Human excreta is a valuable fertilizer for improving soil quality and crop productivity, with a potential to replace or complement the mineral fertilizers. The main challenges related to human excreta regarding agricultural applications are microbial contamination risks, loss of nutrients, and odor issues. Fertilization by lacto-fermented faeces supplemented by biochar has benefits such as improved soil bulk density, nitrate and potassium concentrations as well as the yield and yield components of corn, compared to untreated, simple stored faeces, urine, cattle manure, and unfertilized controls. Even though the mineral fertilizer produced corn with significantly higher height and leaf length, it did not add significantly higher yields than lacto-fermented faeces supplemented by biochar.
A faeces treatment process by combined lacto-fermentation with thermophilic composting and biochar supplementation had better reduction of coliforms, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, and higher germination of radish and growth of tomatoes than combined lacto-fermentation with vermicomposting. Urine lacto-fermentation contributed to a pH reduction below 4, a decrease in the ammonium concentration and odor strength, as well as an increase in the germination rates compared to untreated stored urine.

The results of this study provide important information that can set the basis for scaling up a sustainable technology for the treatment of source separated human excreta while improving its potential for resource recovery.

GENRE
Science & Nature
RELEASED
2017
14 November
LANGUAGE
EN
English
LENGTH
210
Pages
PUBLISHER
CRC Press
SIZE
10.6
MB

Other Books in This Series

Grasping the Water, Energy, and Food Security Nexus in the Local Context Grasping the Water, Energy, and Food Security Nexus in the Local Context
2021
Adaptive Disaster Risk Assessment Adaptive Disaster Risk Assessment
2021
Establishing the Environmental Flow Regime for the Middle Zambezi River Establishing the Environmental Flow Regime for the Middle Zambezi River
2021
Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium
2021
Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin
2019
Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach
2019