Nanocomposite-Based Electronic Tongue Nanocomposite-Based Electronic Tongue
Springer Series in Materials Science

Nanocomposite-Based Electronic Tongue

Carbon Nanotube Growth by Chemical Vapor Deposition and Its Application

    • 87,99 €
    • 87,99 €

Publisher Description

This book describes the fabrication of a frequency-based electronic tongue using a modified glassy carbon electrode (GCE), opening a new field of applying organic precursors to achieve nanostructure growth. It also presents a new approach to optimizing nanostructures by means of statistical analysis. 
The chemical vapor deposition (CVD) method was utilized to grow vertically aligned carbon nanotubes (CNTs) with various aspect ratios. To increase the graphitic ratio of synthesized CNTs, sequential experimental strategies based on response surface methodology were employed to investigate the crystallinity of CNTs. In the next step, glucose oxidase (GOx) was immobilized on the optimized multiwall carbon nanotubes/gelatin (MWCNTs/Gl) composite using the entrapment technique to achieve enzyme-catalyzed oxidation of glucose at anodic potentials, which was drop-casted onto the GCE. The modified GCE’s performance indicates that a GOx/MWCNTs/Gl/GC electrode can be utilized as a glucose biosensor with a high direct electron transfer rate between GOx and MWCNTs/Gl. It was possible to use the fabricated biosensor as an electronic tongue thanks to a frequency-based circuit attached to the electrochemical cell. The results indicate that the modified GCE (with GOx/MWCNTs/Gl) holds promising potential for application in voltammetric electronic tongues.

GENRE
Professional & Technical
RELEASED
2017
24 October
LANGUAGE
EN
English
LENGTH
114
Pages
PUBLISHER
Springer International Publishing
SIZE
3.1
MB

Other Books in This Series

Graphene-Bearing Polymer Composites Graphene-Bearing Polymer Composites
2024
Advanced Dental Metallic Materials Advanced Dental Metallic Materials
2024
Basic Modeling and Theory of Creep of Metallic Materials Basic Modeling and Theory of Creep of Metallic Materials
2024
Tortuosity and Microstructure Effects in Porous Media Tortuosity and Microstructure Effects in Porous Media
2023
Innovative Structural Materials Innovative Structural Materials
2023
Thermo-Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys Thermo-Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys
2023