Adaptive Dynamic Programming for Control Adaptive Dynamic Programming for Control
Communications and Control Engineering

Adaptive Dynamic Programming for Control

Algorithms and Stability

    • USD 129.99
    • USD 129.99

Descripción editorial

There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods:
• infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences;
• finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinte-horizon control;
• nonlinear games for which  a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point.
Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium.
In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming for Control:
• establishes the fundamental theory involved clearly with each chapter devoted to aclearly identifiable control paradigm;
• demonstrates convergence proofs of the ADP algorithms to deepen undertstanding of the derivation of stability and convergence with the iterative computational methods used; and
• shows how ADP methods can be put to use both in simulation and in real applications.
This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.

The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available.

GÉNERO
Técnicos y profesionales
PUBLICADO
2012
14 de diciembre
IDIOMA
EN
Inglés
EXTENSIÓN
440
Páginas
EDITORIAL
Springer London
VENTAS
Springer Nature B.V.
TAMAÑO
13.1
MB

Más libros de Huaguang Zhang, Derong Liu, Yanhong Luo & Ding Wang

Adaptive Dynamic Programming Adaptive Dynamic Programming
2023
Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems
2023
Cooperative Tracking Control and Regulation for a Class of Multi-agent Systems Cooperative Tracking Control and Regulation for a Class of Multi-agent Systems
2019
Frontiers Of Intelligent Control And Information Processing Frontiers Of Intelligent Control And Information Processing
2014
Fuzzy Modeling and Fuzzy Control Fuzzy Modeling and Fuzzy Control
2007
Advances in Neural Networks -- ISNN 2011 Advances in Neural Networks -- ISNN 2011
2011

Otros libros de esta serie

H-Systems H-Systems
2023
Input-to-State Stability Input-to-State Stability
2023
Learning and Robust Control in Quantum Technology Learning and Robust Control in Quantum Technology
2023
Regularized System Identification Regularized System Identification
2022
Inverse Optimal Control and Inverse Noncooperative Dynamic Game Theory Inverse Optimal Control and Inverse Noncooperative Dynamic Game Theory
2022
Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems Relative Optimization of Continuous-Time and Continuous-State Stochastic Systems
2020