• USD 109.99

Descripción de editorial

This book thoroughly covers the remote sensing visualization and analysis techniques based on computational imaging and vision in Earth science. 

Remote sensing is considered a significant information source for monitoring and mapping natural and man-made land through the development of sensor resolutions that committed different Earth observation platforms. The book includes related topics for the different systems, models, and approaches used in the visualization of remote sensing images. It offers flexible and sophisticated solutions for removing uncertainty from the satellite data. It introduces real time big data analytics to derive intelligence systems in enterprise earth science applications. Furthermore, the book integrates statistical concepts with computer-based geographic information systems (GIS). It focuses on image processing techniques for observing data together with uncertainty information raised by spectral, spatial, and positional accuracy of GPS data. The book addresses several advanced improvement models to guide the engineers in developing different remote sensing visualization and analysis schemes. Highlights on the advanced improvement models of the supervised/unsupervised classification algorithms, support vector machines, artificial neural networks, fuzzy logic, decision-making algorithms, and Time Series Model and Forecasting are addressed. 

This book guides engineers, designers, and researchers to exploit the intrinsic design remote sensing systems. The book gathers remarkable material from an international experts' panel to guide the readers during the development of earth big data analytics and their challenges.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2018
mayo 23
LENGUAJE
EN
Inglés
EXTENSIÓN
168
Páginas
EDITORIAL
Springer International Publishing
VENDEDOR
Springer Nature B.V.
TAMAÑO
6.1
MB

Más libros de Nilanjan Dey, Chintan Bhatt & Amira S. Ashour