Biovalorisation of Liquid and Gaseous Effluents of Oil Refinery and Petrochemical Industry Biovalorisation of Liquid and Gaseous Effluents of Oil Refinery and Petrochemical Industry
IHE Delft PhD Thesis Series

Biovalorisation of Liquid and Gaseous Effluents of Oil Refinery and Petrochemical Industry

    • € 87,99
    • € 87,99

Publisher Description

A bidirectional approach of detoxifying the liquid and gaseous effluents of oil refineries is elucidated in this thesis. Liquid effluents of oil refineries contain selenium oxyanions and phenol, while gaseous effluents contain CO/syngas. To remove the phenol and simultaneously reduce the selenite oxyanions, a fungal-bacterial co-culture of Phanerochaete chrysosporium and Delftia lacustris was developed. Two modes of co-cultures of the fungus and the bacterium were developed. Both cultures were investigated for phenol degradation and selenite reduction. In order to valorize the CO/syngas by bioconversion techniques. an anaerobic methanogenic sludge was acclimatized to use CO as the sole carbon substrate to produce acetic acid, butyric acid, and hexanoic acid. Later, the acids were metabolized at lower pH, producing alcohols ethanol, butanol and hexanol, confirming the successful enrichment strategy. The next experiment focused on the absence of the trace element tungsten, and consecutively selenium on the previously CO acclimatized sludge under the same operating conditions. An in-situ synthesized co-polymeric gel of N-ter-butyl-acrylamide and acrylic acid was used to recover ethanol, propanol and butanol from a synthetic fermentation broth. The scope of repeated use of the gel for alcohol recovery was investigated and 98% alcohol was recovered.

GENRE
Science & Nature
RELEASED
2021
21 February
LANGUAGE
EN
English
LENGTH
200
Pages
PUBLISHER
CRC Press
SIZE
10.9
MB

Other Books in This Series

Grasping the Water, Energy, and Food Security Nexus in the Local Context Grasping the Water, Energy, and Food Security Nexus in the Local Context
2021
Adaptive Disaster Risk Assessment Adaptive Disaster Risk Assessment
2021
Establishing the Environmental Flow Regime for the Middle Zambezi River Establishing the Environmental Flow Regime for the Middle Zambezi River
2021
Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium
2021
Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin
2019
Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach
2019