Anonymizing Health Data Anonymizing Health Data

Anonymizing Health Data

Case Studies and Methods to Get You Started

    • $29.99
    • $29.99

Publisher Description

Updated as of August 2014, this practical book will demonstrate proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets.

Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors’ experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others.
Understand different methods for working with cross-sectional and longitudinal datasetsAssess the risk of adversaries who attempt to re-identify patients in anonymized datasetsReduce the size and complexity of massive datasets without losing key information or jeopardizing privacyUse methods to anonymize unstructured free-form text dataMinimize the risks inherent in geospatial data, without omitting critical location-based health informationLook at ways to anonymize coding information in health dataLearn the challenge of anonymously linking related datasets

GENRE
Computing & Internet
RELEASED
2013
11 December
LANGUAGE
EN
English
LENGTH
228
Pages
PUBLISHER
O'Reilly Media
SELLER
O Reilly Media, Inc.
SIZE
4.9
MB
Handbook of Biosurveillance Handbook of Biosurveillance
2011
Research Design and Analysis Research Design and Analysis
2019
Coverage Measurement in the 2010 Census Coverage Measurement in the 2010 Census
2009
Healthcare Data Analytics:   Primary Methods and Related Insights Healthcare Data Analytics:   Primary Methods and Related Insights
2019
ePro ePro
2016
Statistics Done Wrong Statistics Done Wrong
2015
Guide to the De-Identification of Personal Health Information Guide to the De-Identification of Personal Health Information
2013
Practical Synthetic Data Generation Practical Synthetic Data Generation
2020
Building an Anonymization Pipeline Building an Anonymization Pipeline
2020
Risky Business: Sharing Health Data While Protecting Privacy Risky Business: Sharing Health Data While Protecting Privacy
2013