Structural Equation Modeling Structural Equation Modeling
Wiley Series in Probability and Statistics

Structural Equation Modeling

Applications Using Mplus

    • $144.99
    • $144.99

Publisher Description

Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus

Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model.

The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results.

Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM.
Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM
Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus

GENRE
Science & Nature
RELEASED
2019
17 September
LANGUAGE
EN
English
LENGTH
536
Pages
PUBLISHER
Wiley
SELLER
John Wiley & Sons Australia, Ltd
SIZE
16
MB
Handbook of Latent Variable and Related Models Handbook of Latent Variable and Related Models
2011
Mathematical Methods in Survival Analysis, Reliability and Quality of Life Mathematical Methods in Survival Analysis, Reliability and Quality of Life
2013
Meta-Analysis Meta-Analysis
2015
Structural Equation Modeling with lavaan Structural Equation Modeling with lavaan
2018
Methods and Applications of Longitudinal Data Analysis Methods and Applications of Longitudinal Data Analysis
2015
Data Analysis Using Hierarchical Generalized Linear Models with R Data Analysis Using Hierarchical Generalized Linear Models with R
2017
Applied Time Series Analysis for the Social Sciences Applied Time Series Analysis for the Social Sciences
2025
Statistical Planning and Inference Statistical Planning and Inference
2025
Permutation Tests for Complex Data Permutation Tests for Complex Data
2025
Biostatistical Methods Biostatistical Methods
2014
An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA
2023
Nonparametric Statistics with Applications to Science and Engineering with R Nonparametric Statistics with Applications to Science and Engineering with R
2022