Mechanics of Material Forces Mechanics of Material Forces
    • USD 109.99

Descripción editorial

In this single volume the reader will find all recent developments in one of the most promising and rapidly expanding branches of continuum mechanics, the mechanics of material forces. The book covers both theoretical and numerical developments. Conceptually speaking, common continuum mechanics in the sense of Newton—which gives rise to the notion of spatial (mechanical) forces—considers the response to variations of spatial placements of "physical particles” with respect to the ambient space, whereas continuum mechanics in the sense of Eshelby—which gives rise to the notion of material (configurational) forces—is concerned with the response to variations of material placements of "physical particles” with respect to the ambient material. Well-known examples of material forces are driving forces on defects like the Peach-Koehler forece, the J-Integral in fracture mechanics, and energy release. The consideration of material forces goes back to the works of Eshelby, who investigated forces on defects; therefore this area of continuum mechanics is sometimes denoted Eshelbian mechanics.


Audience

This book is suitable for civil and mechanical engineers, physicists and applied mathematicians.

GÉNERO
Técnicos y profesionales
PUBLICADO
2006
20 de enero
IDIOMA
EN
Inglés
EXTENSIÓN
354
Páginas
EDITORIAL
Springer US
VENDEDOR
Springer Nature B.V.
TAMAÑO
5.9
MB
Spatial and Material Forces in Nonlinear Continuum Mechanics Spatial and Material Forces in Nonlinear Continuum Mechanics
2022
The Catalogue of Computational Material Models The Catalogue of Computational Material Models
2021
Will Will
2018
IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics
2009
Functional Differential Equations and Dynamic Equations on Time Scales Functional Differential Equations and Dynamic Equations on Time Scales
2025
A Concise Course in Elasticity A Concise Course in Elasticity
2025
Topological Methods for Delay and Ordinary Differential Equations Topological Methods for Delay and Ordinary Differential Equations
2024
Foundations of Geometric Continuum Mechanics Foundations of Geometric Continuum Mechanics
2023
Scalable Algorithms for Contact Problems Scalable Algorithms for Contact Problems
2023
Well-Posed Nonlinear Problems Well-Posed Nonlinear Problems
2023