Nonlinear Control of Vehicles and Robots Nonlinear Control of Vehicles and Robots
Advances in Industrial Control

Nonlinear Control of Vehicles and Robots

    • USD 84.99
    • USD 84.99

Descripción editorial

Tracking of autonomous vehicles and the high-precision positioning of robotic manipulators require advanced modeling techniques and control algorithms. Controller design should take into account any model nonlinearities.

Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. To begin with, the main classes of nonlinear systems and stability methods are summarized. Basic nonlinear control methods useful in manipulator and vehicle control – linearization, backstepping, sliding-mode and receding-horizon control – are presented. Formation control of ground robots and ships is discussed.

The second part of the book deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities including analysis of their influence on the performance of motion control systems. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated.

Theoretical (guaranteed stability, guaranteed tracking precision, boundedness of all signals in the control loop) and practical (implementability) aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors such as Inertial Measurement System, Global Positioning System and vision systems as part of the control system.

Nonlinear Control of Vehicles and Robots will interest academic researchers studying the control of robots and industrial research and development engineers and graduate students wishing to become familiar with modern control algorithms and modeling techniques for the most common mechatronics systems: vehicles and robot manipulators.

GÉNERO
Técnicos y profesionales
PUBLICADO
2010
1 de diciembre
IDIOMA
EN
Inglés
EXTENSIÓN
492
Páginas
EDITORIAL
Springer London
VENDEDOR
Springer Nature B.V.
TAMAÑO
10.9
MB

Otros libros de esta serie

Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games
2024
Process Control for Pumps and Compressors Process Control for Pumps and Compressors
2024
Control of Autonomous Aerial Vehicles Control of Autonomous Aerial Vehicles
2023
Reinforcement Learning Reinforcement Learning
2023
Control of Variable-Geometry Vehicle Suspensions Control of Variable-Geometry Vehicle Suspensions
2023
Advanced Model Predictive Control for Autonomous Marine Vehicles Advanced Model Predictive Control for Autonomous Marine Vehicles
2023