The Malliavin Calculus and Related Topics The Malliavin Calculus and Related Topics
Probability and Its Applications

The Malliavin Calculus and Related Topics

    • USD 84.99
    • USD 84.99

Descripción editorial

There have been ten years since the publication of the ?rst edition of this book. Since then, new applications and developments of the Malliavin c- culus have appeared. In preparing this second edition we have taken into account some of these new applications, and in this spirit, the book has two additional chapters that deal with the following two topics: Fractional Brownian motion and Mathematical Finance. The presentation of the Malliavin calculus has been slightly modi?ed at some points, where we have taken advantage of the material from the lecturesgiveninSaintFlourin1995(seereference[248]).Themainchanges and additional material are the following: In Chapter 1, the derivative and divergence operators are introduced in the framework of an isonormal Gaussian process associated with a general 2 Hilbert space H. The case where H is an L -space is trated in detail aft- s,p wards (white noise case). The Sobolev spaces D , with s is an arbitrary real number, are introduced following Watanabe’s work. Chapter2includesageneralestimateforthedensityofaone-dimensional random variable, with application to stochastic integrals. Also, the c- position of tempered distributions with nondegenerate random vectors is discussed following Watanabe’s ideas. This provides an alternative proof of the smoothness of densities for nondegenerate random vectors. Some properties of the support of the law are also presented.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2006
27 de febrero
IDIOMA
EN
Inglés
EXTENSIÓN
396
Páginas
EDITORIAL
Springer Berlin Heidelberg
VENDEDOR
Springer Nature B.V.
TAMAÑO
16.7
MB
Stochastic Neutron Transport Stochastic Neutron Transport
2023
Discrete-Time Semi-Markov Random Evolutions and Their Applications Discrete-Time Semi-Markov Random Evolutions and Their Applications
2023
Renewal Theory for Perturbed Random Walks and Similar Processes Renewal Theory for Perturbed Random Walks and Similar Processes
2016
Stochastic Calculus and Applications Stochastic Calculus and Applications
2015
Invariant Probabilities of Transition Functions Invariant Probabilities of Transition Functions
2014
Analysis of Variations for Self-similar Processes Analysis of Variations for Self-similar Processes
2013